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An efficient three-dimensional implicit finite difference scheme with a double model velocity 
linearization of the free surface conditions is used to model three-dimensional potential flow 
about an abruptly started surface piercing ship moving at constant speed in a channel of 
initially calm water. The numerical scheme is efficient with respect to both computer storage 
and time mainly due to the use of the direct matrix imbedding method. The double model 
velocity linearization should yield more accurate results, except perhaps for very high Froude 
numbers, than the standard free stream velocity linearization. With slight modification, the 
numerical scheme can compute flow about an accelerating ship. Computed results such as 
ship wave profiles and wave resistence for four different ship speeds are in generally good 
agreement with model test experiments. Contour and perspective plots of the generated ship 
waves are displayed. 

1. INTRODUCTION 

The problem of wave making and wave resistance of ships has been and is one of 
the central areas of marine research, e.g. [l-3]. The wave resistence of an 
accelerating surface piercing ship has been of particular interest in connection with 
towing-tank experiments. This paper presents a numerical technique for obtaining the 
transient solution for the potential flow about a ship translating with uniform speed 
from an abrupt start in calm water in a channel. This problem can be viewed 
mathematically as an initial boundary-value problem. The abrupt start is viewed as 
modeling a very rapid acceleration from rest. The numerical technique can handle 
accelerations and decelerations of the ship, although this is not considered in this 
paper. 

The initial boundary value problem consists of two major parts: (a) the field 
equation subject to the ship boundary condition, and (b) the free surface equations. In 
this paper, part (a) is handled numerically by the direct matrix imbedding technique 
as described in detail in [4]. For part (b) a double model velocity linearization is 
used. The free surface is linearized in terms of a velocity field in the mean free 
surface level about the ship obtained from a separate boundary value problem for the 
potential flow in the channel past the ship and its mirror image (double model) 
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reflected in the mean level. (There is no free surface in this separate problem.) This 
linearization results in more accurate results than those obtained using a standard 
free stream velocity linearization as in [5]. Dawson [ 1 ] has obtained excellent steady- 
state results using such a linearization with source panels. 

The numerical technique for each time step couples the fast solution of part (a) by 
the imbedding technique to the solution of part (b) by Gauss-Seidel point iteration. 
The coupling ordinarily involves a few iterations in a “predictor-corrector” manner 
with a convergence test on the vertical fluid velocity at the free surface. 

The imbedding technique, which is used to satisfy the ship boundary condition, 
imbeds the ship in a grid. A Cartesian grid is used to allow very fast, efficient direct 
solutions to matrix systems involved in the imbedding technique. Since the ship 
generally will not lie on grid points, special finite differencing must be used in the 
neighborhood of the ship. This neighborhood includes grid points both on and below 
the undisturbed mean free surface level (on which the linearized free surface 
equations are to be satisfied). 

Section 2 of this paper describes the mathematical formulation for the initial 
boundary value problem. Section 3 describes the numerical method. Computed results 
are presented in Section 4, and Section 5 summarizes conclusions. 

2. MATHEMATICAL FORMULATION 

Consider a right-handed Cartesian coordinate reference frame faed to a ship hull 
translating with uniform speed U in a channel (Fig. 1). (The dimensionless speed of 1 
is shown. Distances have been nondimensionalized with respect to the ship length L, 
and the vector n = (n,, n,,, n,) is the unit outward normal to the hull.) In the 
discussion that follows the fluid is assumed to be incompressible and the flow to be 
irrotational, i.e., potential flow. 

The problem of obtaining the double model velocity is considered first. This is 
equivalent to considering potential flow past the ship and its image reflected about 
the plane y = 0. The computational region and ship are thus symmetric about y = 0. 
Since we shall consider a ship symmetric about the plane z = 0 in this paper, Fig. 1 

L, 
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FIG. 1. The computational region. 
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actually shows one-fourth of the region in which potential flow past the double model 
(the ship and its reflected image) is to be computed. Of particular interest, for the 
free-surface linearization, is the potential flow velocity at y = 0. As the dimensionless 
velocity potential @ (=x +$) and the dimensionless velocity vector (@,, QY, QZ) 
given by (1 + Jx,, Jyy, #z) h ave been nondimensionalized in terms of LU and U, respec- 
tively, the problem then is to numerically compute the double model velocity vector 
(1 + JX,, 0, 4,) in the plane y = 0 subject to the following boundary value problem for 
the region shown in Fig. 1: 

in the computational region D exterior to the ship, (1) 

at y = 0, (2) 

at the ship hull, (3) 

at y = -h, (4) 

at x=O,L,, (5) 

at z=O,Lz, (6) 

This is a steady state problem with 4 time-independent. The subscript n indicates a 
normal derivative, and z = L, is the channel sidewall. Equation (2) represents the 
reflection condition at y = 0. Equation (6) at z = 0 represents the symmetry 
condition, and at z = L,, the channel sidewall condition. Equations (4) and (5) are 
applied far enough away from the ship to be approximately valid. The direct matrix 
imbedding technique as described in (41 is used to solve numerically this boundary 
value problem for the velocity vector with components (1 + $X, 0, 4,) at y = 0. These 
components are then used in the free surface problem definition which shall now be 
discussed. 

The abrupt start of a surface $iercing ship moving at uniform speed and generating 
ship waves in a channel with fluid initially at rest is modeled with an initial boundary 
value problem in the following way: First the following dimensionless velocity 
potential is introduced in terms of 6: 

~=@+qLx+$+~=x+~. (7) 

The free surface conditions for gravity waves are given nondimensionally (see [6]) as 

+L-q+6vz+vt=o at y=b (8) 

rl/Fr’ + &‘t + i(&z + 4; + 6:) + p = c(t) at y = r. (9) 

The quantities q, t, and p are the nondimensional free surface elevation, time, and 
pressure, respectively, and have been scaled by L, L/U, and pU2, respectively, p being 
the constant density. The nondimensional Froude number Fr = U/m with g the 
acceleration due to gravity and c is a time-dependent constant. Setting p to dimen- 
sionless atmospheric pressure and assuming no disturbance at infinity makes it 
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possible to remove the constant c = f + p from both sides of Eq. (9). Substituting 
Eq. (7) for 6 into Eqs. (8) and (9), and eliminating all quadratic terms involving 
spatial derivatives of $ and q (i.e., JX;rt,, etc.), produces the following free surface 
equations, now applied at y = 0 (exterior to the ship) in Fig. 1 and linearized in terms 
of the known double model velocities 1 + 6, and 6, at y = 0: 

VI = - [(I + OL - 4y + $2 rtzl at y=O, (10) 

~4 = - [v/Fr* - f(& + 43 + (1 + $3, + $A1 at y=O. (11) 

(All velocities have been scaled with respect to U and all coordinate distances with 
respect to L.) 

The following boundary and initial value conditions complete the definition of the 
initial boundary value problem for the region displayed in Fig. 1: 

#xx + 4yy + hz = 0 in the computational region D exterior to the ship, (12) 

4, = -4 at the ship hull, (13) 

#,=O at y = -h, (14) 

4, = 0 at x=0, L,, (15) 

4, =o at z=O, L,, (16) 

rf=o;4=0 at t = 0, at y = 0. (17) 

Equation (14) represents a wall or bed condition at the bottom of the channel. It is 
stressed that z = 0 is a plane of symmetry for the symmetric ship, and therefore for 
the flow, and that z = L, is the channel sidewall. Equation (15) is valid as long as 
waves propagating downstream have not reached the downstream boundary (x = L,). 
Equation (17) simulates the abrupt start. Equations (10) through (17) represent the 
initial boundary value problem. 

An expression, useful in the numerical computation, can be obtained for the 
normal derivative of the free surface elevation r,r at the ship at the undisturbed level 
y = 0. Applying the ship hull condition (Eq. (13)) and taking the normal derivative of 
Eq. (11) at the ship at y = 0 gives 

But 

(18) 

(@rh>n = @r(h), = ((1 + !mx + iAL (19) 

Here @, is the arclength derivative of the double model potential @ (=x + $) along 
the ship at y = 0. ((@,), is zero.) Substituting Equation (19) into Eq. (18) (J,, = 0 at 
the ship) yields the following expression for q,, in terms of known quantities from the 
double model computation and a known (,,[ from Eq. (13): 

tl, = --Fr*[-hk + Wnrl at the ship at y = 0. (20) 
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Normal differentiation in the plane y = 0 is valid since the ship considered in this 
paper has its unit outward normal vector at y = 0 lying in the plane y = 0. This is 
true (or approximately true) of most ships. 

The pressure p below the free surface is given by Bernoulli’s law: 

P = 44, + fP#, + 4f + 4: + &> + yP21. 

(The dimensional pressure has been scaled by pU2.) The nondimensional wave 
resistance to the ship’s movement through the water is given by 

C, = -2 ’ 
! 

pn, dS. (22) 
hull 

The dimensional wave resistance has been scaled by pU*A, where A is the projection 
of the ship hull surface S (one side) onto the center plane z = 0. 

3. THE NUMERICAL METHOD 

The direct matrix imbedding technique as presented in detail in [4] is used to 
numerically solve (i) the double model velocity problem (defined by Eqs. (1) through 
(6)), and (ii) that component of the ship wave problem which is coupled to the 
solution of the free surface equations in a predictor corrector manner for each time 
step. This component is defined by Eqs. (12) through (16) with a Dirichlet condition 
for 4 at y = 0. Both boundary value problems are solved on a three-dimensional 
Cartesian grid covering the region shown in Fig. 1. (The ship hull surface is not 
necessarily coincident with grid points.) For the double model problem, the velocity 
potential 6 is obtained numerically at grid points in the plane y = 0 from which the 
double model velocity components (1 + JX,, 0, Jz) are calculated at grid points, using 
second order differencing at y = 0. These velocity components are then used for the 
ship wave problem. For the ship wave problem component, 4, at y = 0 is calculated 
numerically from second order one-sided differencing involving values of 4 computed 
in two planes of constant y below y = 0 in addition to those values at y = 0. 

The second order finite difference representation of both boundary value problems 
gives rise to a large number of simulateneous linear equations whose matrix structure 
is regular and sparse, except for a relatively small number of perturbed linear 
equations representing the ship hull boundary condition. The imbedding technique is 
designed to solve efficiently this slightly perturbed system and, as used here, is based 
on Woodbury’s formula [7]. The technique involves obtaining two very fast direct 
solutions of a regular sparse system over a small part (near the ship and the free 
surface) of the Cartesian grid for the region of Fig. 1, plus a solution to a full square 
matrix system of linear equations of relatively small order. The full matrix C (called 
the “capacitance” matrix in the literature [ 7,8]) must be preprocessed and is of order 
equal to the number of “irregular stars” or finite difference operators surrounding the 
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ship hull that are perturbed from the standard second order, seven-point operators. 
These irregular stars can be formulated in many different ways but those used in [4] 
incorporated curvature of the ship hull along with the ship hull condition and 
Laplace’s equation. These irregular stars yield second order accuracy. 

The three-dimensional grid used is defined as follows: L, , L, , and h in Fig. 1 are 
6.4, 0.8, and 32/25, respectively (i.e., the region was 6.4 ship lengths long, etc.). A 
grid with 128 intervals in x, 256 intervals in y, and 16 intervals in z overlays the box 
region of Fig. 1. Spacing in z expands from the ship to the sidewall of the channel; 
spacing in the x- and y-directions is uniform with dx = 0.05 and Ay = 0.005. The z- 
coordinate discretization consists of eight mesh intervals with spacing AZ = 0.025 
from z = 0 to z = 0.2, four mesh intervals with spacing AZ = 0.05 from z = 0.2 to 
z = 0.4, and four mesh intervals with spacing AZ = 0.1 from z = 0.4 to z = 0.8. For 
increased efficiency in the imbedding technique [4] uniform spacing in the x-direction 
was chosen to permit use of the Fast Fourier Transform, and uniform spacing in the 
y-direction made possible the calculation of the solution only where it was required 
(near the ship hull and the free surface). The uniform spacings in the x- and y- 
directions contribute to a much faster solution process. The nature of the stretched 
spacing in z, in which the size of adjacent intervals is either doubled, kept the same, 
or halved, allows one to retain the use of a quite efficient imbedding technique. 

The ship hull used in this paper is known as the Wigley 1805A [9] and is 
represented by the analytic function 

z = H(x, y) = *(3/64)(1 - 256y2)(l - 6.4(x -x,)* + 9.6(x - xJ4). (23) 

When a ship hull is described by an analytic or piecewise anlytic function, local 
curvature of the ship hull can be incorporated into the irregular stars as was done 
here. Techniques exist for representing hulls given by discrete points as piecewise 
analytic functions [lo]. The normal vector to the ship hull described by Eq. (23) does 
not exist at the intersection of the hull with the plane z = 0. Therefore this inter- 
section is taken to lie halfway between grid points in x. The hull is taken to be twenty 
grid intervals in length along x and twelve and one-half intervals in depth y. The half- 
beam equal to 3/64 is just under two grid intervals wide in the z-direction, with x, 
(the center of the ship) taken to be 2.025. For the double model problem 260 
irregular stars were alongside the ship, including 20 in the plane y = 0. Additionally 
46 irregular stars (centered in the plane z = 0) surrounded the ship’s intersection with 
z = 0 for a total of 306 irregular stars. In the ship wave problem the total number of 
irregular stars used by the imbedding technique is 284 (rather than 306) because of 
the Dirichlet condition for Q at y = 0. This necessitates additional computer 
preprocessing for an additional capacitance matrix C, for the ship wave problem. 
Figure 2 shows the computer-drawn grid and hull contour in the mean level plane 
y = 0. 

An implicit second order time difference scheme known as Euler’s modified 
method is used to advance the free surface Eqs. (10) and (11) at each time step for 
the ship wave problem. An explicit scheme is not chosen since it ordinarily requires 
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FIG 2. The grid and hull contour in the plane y  = 0. 

very small time steps for stability. If the right sides of Eqs. (10) and (11) are denoted 
by F and G, respectively, then the scheme is 

(i)f+i = f + (Af/2)["'F"+' +F"] + 0((A)', (Ax)', (4~)~) at y = 0, (24) 
(i)$nt I = 4" + (~,/2)[(i)Gn+ 1 + G”] + O(W2, (Ax)‘, (Az)~) at y= 0, (25) 

where At is the time step, F and G are evaluated at time levels it and n + 1 (with 
t ni’ = t” + At), and the left-hand superscript (i) is the iteration counter for new 
values at time t” + ‘. Second order spatial differencing, ordinarily central, is used for F 
and G. Equations (24) and (25) are applied at all grid points of y = 0. 

The typical calculation for a new time level n + 1 (based on known values at time 
level n) is described as follows: Eq. (24) is solved by Gauss-Seidel point iteration for 
(i’ v ‘+ ’ for all grid points at y = 0. These values of ‘i’)7nf’ are then substituted into 
Eq. (25) which is then solved by Gauss-Seidel point iteration for (i’#nt’ at all grid 
points of y = 0. These values of (i’#nf’ at y = 0 serve as a Dirichlet condition for the 
boundary value problem, defined by Eqs. (12) through (16), which is solved for 
‘i’#,“” at y = 0 by the imbedding technique. This completes the (i)th computational 
cycle and is followed by a convergence test for the new time level n + 1. If the test is 
not satisfied, these values (i’$,“” at y = 0 are substituted into Eq. (24) and the 
(i + 1)st computational cycle starts. The convergence test for the new time level n + 1 
is satisfied when 

I%+’ - (ip’)#~t’l//‘i’@F+‘I < -5, or / “‘4’ ’ 1 < E2 

for all grid points at y = 0. (Values at time level n are used for (i) = (0) values.) The 
same type of convergence conditions, with different values of E, and c2, are used to 
determine convergence of the Gauss-Seidel point iteration for q and 4 within each 
computational cycle. When all convergence conditions are satisfied, the latest iterates 
for tiY, r, and d become the actual values at time level n + 1. Convergence for a new 
time level II + 1 typically requires three or four computational cycles. 

The time step used throughout (unless otherwise specified) was At equal 0.03. In 
inequality (26), E, and e2 were 0.05 and 0.001, respectively. For the Gauss-Seidel 
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FIG. 3. The local grid about the hull at y  = 0. 

point iterations for q and 4, E, and cz were 0.001 and 0.0005, respectively. Typically 
the maximum number of Gauss-Seidel iterations (always in the first cycle) for either 
(i)g + 1 or (i)#n+ 1 is about six. This number usually decreases rapidly in the following 
two or three cycles within a time step. 

The use of a Cartesian grid (required for the efficiency of the imbedding technique) 
requires very special care in the finite differencing for Eqs. (24) and (25) in the 
immediate vicinity of the surface piercing ship. Central differencing for x- and z- 
derivatives is used where possible. Since terms with x-derivatives (i.e., (1 + $,.)r,, 
(1 + $Jd,) dominate those with z-derivatives (i.e., 6, qL, JZ 4,) in Eqs. (10) and (1 l), 
finite differencing in x at grid points l-4 in Fig. 3 is of particular concern. At points 
1 and 4, differencing in x must avoid use of Eq. (13), since the normal vector to the 
hull’s surface is not defined at the sharp edges. At point 1 one-sided second order 
upstream differencing in x is employed. Upstream differencing for x-derivatives must 
also be used at points 3 and 4, since waves propagate downstream. At point 4 x- 
derivatives for a quantity Q (such as r] or 4) were computed according to 

(QA = (Qa)&os a, (27) 

where A represents the direction increasing along the dashed line from point 4 to 
points a and b in Fig. 3. Numerically (Q.,,)4 is a one-sided second order upstream 
difference of Q using values at 4, a and b (equally spaced in the A direction). 
(Symmetry makes the z-derivatives at points 1 and 4 equal zero.) 

Grid points 2 and 3 present particular problems which can be handled in a number 
of ways. In this paper at point 3 

(QA = (QA/cos a + (QA CotP (28) 

using values of Q at 3, e, f, c, d. At point 2 a one-sided second order upstream 
difference in x was used. 

FIG. 4. The z-derivatives alongside the hull. 
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The z-derivatives at grid points adjacent to the hull are discretized in the following 
way (see Fig. 4) using Eqs. (20) and (13): Along the dashed line(s) normal to the 
body at P in Fig. 4, a one-sided second order finite difference is taken at the body 
point P, using values at P and the points marked with asterisks. (The values at the 
asterisks are obtained from second order Lagrangian interpolation in the x-coordinate 
direction using values at i, j, k and 1, m, n.) From this finite difference formula for 
(Q,& an expression for Q at point P is obtained which, along with values of Q at 
point j and m, is used in a second order difference centered at point j for (Q,)]. This 
discretization has worked nicely. 

It is possible and perhaps desirable for the x-derivative discretization discussed for 
points 2 and 3 to use the hull normal conditions of Eqs. (20) and (13). Further 
experimentation with finite difference operators is certainly possible. For submerged 
non-surface piercing bodies generating surface waves, these special discretizations for 
the free surface equations are obviously not required. 

Numerical computations for p and C, in Eqs. (21) and (22), respectively, are 
second order accurate. Quantities such as 4, #,, etc. at the ship hull are obtained in 
terms of computed grid values with an editing process described in (41. 

4. RESULTS 

Results were obtained for the four Froude numbers Fr = 0.503, 0.45, 0.385, 0.32 
for the Wigley 1805A hull (renamed Model 2891 in [9]) given by Eq. (23). Dimen- 
sionally this hull has a length L equal to 16 ft, a beam B of 1.5 ft, and a 1.0 ft draft 
D. Its block coefficient is 0.392 (its volume equals 0.392 LBD). 

Numerical results will be compared with observed data and values from steady 
state, analytic, “thin ship” theory [ 11, pp. 3847; 91. In thin ship theory the ship is 
assumed so thin that the hull condition (Eq. (13)) is applied at z = 0, and the free 
surface Eqs. (8) and (9) are linearized in terms of the free stream velocity U with no 
waves upstream of the ship permitted. The numerical values obtained should be closer 
to observed values than are the thin ship values. 

The influence of the sidewalls and the bed of the channel (Fig. 1, which shows half 
the channel) on the local flow solution about the ship was considered negligible, since 
(a) the depth h (equal to 32/25) of the channel is much greater than half the 
maximum ship wave length (see [6]) for the cases considered, and (b) the sidewalls 
are 0.8 of a ship length from the center plane z = 0 which is more than 16 times 
larger than the half-beam of the ship thus allowing waves to reflect downstream off 
the sidewalls. 

Figure 5 shows numerically computed wave profiles alongside and at the hull 
compared with steady state, observed and thin ship theory profiles at the hull [9] for 
the four Froude numbers considered. (This and all the following figures have been 
computer drawn using the Calcomp 936 plotter.) Here “alongside” means the 
numerically computed elevation 7 at the nearest grid points alongside the hull (i.e., 
the points i, j, k, etc. in Fig. 4, and points 2 and 3 in Fig. 3), whereas “at the hull” 
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FIG. 5. Wave profiles alongside and at the hull for the four Froude numbers. 

means edited values of 9 at points P at the hull (in Fig. 4). This distinction is 
necessary since the hull does not ordinarily lie on grid points. Values of r,r at points P 
are obtained from numerical values of v at grid points in the field, using the normal 
derivative condition of Eq. (20) in the manner of the discussion for Fig. 4. For the 
relatively late times t indicated, the numerical wave profiles generally agree with the 
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steady-state observed profiles better than do the steady-state thin ship profiles for all 
four cases. Also there is very little difference between the numerical wave profiles 
alongside and at the hull except for Fr = 0.503, as seen by comparing Fig. 5 for 
Fr = 0.503 with Fig. 6. The numerical bow wave is not as accurate for Fr = 0.503 
when compared to the other Froude numbers. However, the numerical stern wave is 
excellent for Fr = 0.503. The fourth numerical data points from the bow and stern 
ends correspond to grid points 2 and 3, respectively, in Fig. 3. Except for the fourth 
bow data point (corresponding to grid point 2) for Fr = 0.32 and 0.503, the special 
discretizations used at grid points 2 and 3 seem to have worked reasonably well. It is 
felt that incorporating Eq. (20) into the discretization for the x-derivative at grid 
point 2 should improve its accuracy. Steady-state observed and thin ship theory data 
were not available for Fr = 0.45. The time t corresponds directly to the distance the 
ship has moved after its abrupt start at t equal zero (e.g., t = 2 indicates the ship has 
moved two ship lengths). 

Figure 7 shows the numerically computed wave resistance C, plotted versus time t 
and compared with the steady state, observed values [9] for the four cases. The 
observed, steady state values are 0.0044341, 0.0040256, 0.0023619, and 0.0008414 
for Fr equal to 0.503, 0.45, 0.385, and 0.32, respectively. The steady state, thin ship 
theory values (not drawn) are 0.004875, 0.0048076, 0.002740, and 0.0004193 for Fr 
equal to 0.503, 0.45, 0.385, and 0.32, respectively. After the initial transient effects, 
the wave resistance curves for the higher Froude numbers (higher speed cases) 
Fr = 0.503 and 0.45 are approximately steady-state beyond t = 2.0 and are quite 
close to the observed, steady state values. Numerical values for C, at the last time 
steps computed are 0.00415 and 0.00370 for Fr equal to 0.503 (at t = 3.0) and Fr 
equal to 0.45 (at t = 3.6), respectively, and represent a considerable improvement 
over the steady-state thin ship theory values for these Froude numbers. 

The wave resistance curves for the smaller Froude numbers Fr = 0.385 and 0.32 
show high frequency fluctuations about mean curves having a longer period 
oscillation. (The words “oscillation” and “fluctuation,” as used in the following 
discussion, are not interchangeable as they have their own separate meanings just 
defined.) For the thin ship theory approximations, Wehausen [ 12) has obtained an 
asymptotic expansion for large time for the wave resistence of a thin ship abruptly 
started from rest. This asymptotic expansion predicts that, after initial transient 
effects, the wave resistance curves will be oscillatory in time about steady state values 
with oscillations of constant wave length for each Froude number with the wave 
length increasing with increasing Froude number. Additionally, this expansion 
predicts that the amplitude of the oscillations decreases with increasing Froude 
number and with increasing time. This asymptotic expansion up to terms of 0(1/t’) 
gives the following dimensionless wave length of the oscillations 

A. = 87~ Fr*. (29) 

It seems reasonable that this asymptotic expansion might give insight into the 
behavior of the wave resistance for the problem we are considering: that of a double 
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model velocity linearization for the free surface with an exact body condition for the 
ship hull. Some similarities to the asymptotic expansion can be seen in the mean 
resistance curves (after averaging out the high-frequency fluctuations) for Fr = 0.32 
and 0.385, with Fr = 0.32 showing approximately one-half of an oscillation. (The 
calculation for Fr = 0.385 does not go far enough to approximately determine the 
wave length of the oscillation.) Fr = 0.32 appears to be in good agreement with 
Eq. (29). The mean wave resistance curve for Fr = 0.385 exhibits an oscillation of 
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FIG. 7. Wave resistance C, versus time t for the four Froude numbers. (---, numerical C,; ---, 
numerical C, using At = 0.015; - - . , observed, steady-state C,). 
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longer wave length and smaller amplitude than that for Fr = 0.32 which is 
qualitatively in agreement with Welhausen’s expansion. The expansion predicts 
negligible oscillations for higher Froude numbers such as Fr = 0.45 and 0.503, which 
is also the case for the numerical wave resistance curves for these Froude numbers in 
Fig. 7. To run Fr = 0.32 and 0.385 to steady state would be prohibitively expensive. 
Wave resistance oscillations are due to a periodic rise and fall of the stern wave at 
the hull. After initial transient effects, the wave profiles for all the Froude number 
cases considered become approximately steady-state quite quickly, except at the stern 
for the smaller Froude numbers. When the stern wave is higher, the wave resistance is 
smaller because the greater fluid pressure at the stern pushes the hull in its direction 
of movement. When the stern wave is lower, the wave resistance is greater because 
there is less fluid pressure at the stern. 

A recent paper [ 131 provides physical insight into the cause of the time oscillation 
of the wave resistance. Towing tank experiments mentioned in [ 131 showed that 
whenever a ship (moving at constant speed) had an abrupt start or passed over an 
irregularity in the channel bottom, forces acting on the struts holding the ship model 
showed a force response localized in time followed by a slowly decaying almost 
periodic response which was called “ringing.” As mentioned in [ 131, “The 
circumstances under which ringing occurs give a hint as to the physical cause. An 
abrupt start, a so-called “hard start,” piles up the water in front of the ship model. 
This water must then dissipate itself in some fashion. Similarly, when the model 
passes over an obstruction, the water between the obstruction and ship is squeezed 
upwards and again must dissipate itself.” Ringing is primarily a towing tank 
phenomenon and results mainly from the interference of multiply reflected waves 
(from the channel sidewalls) with each other and with the primary wave (resulting 
from the disturbance at the bow). Ringing occurs for an abrupt start in water of any 
depth. The period of the ringing is a function of (1) constant speed of the ship model, 
(2) depth of channel, (3) length of ship model, and (4) width of channel. Based on 
results presented in [ 131 the nondimensional period of ringing appears to be (for the 
Fr range of the present paper) on the order of several ship lengths travelled (i.e., 
several units of nondimensional time) and increases with increasing Froude number. 
The channel width of 1.6 ship lengths, as used in this paper, is not wide enough to 
prevent noticeable ringing. 

The fluctuations in the wave resistance curve for Fr = 0.32, which are less 
pronounced for Fr = 0.385 and which are negligible for Fr = 0.503 and 0.45 (being 
eliminated in time as seen in Fig. 7), are open to question, at least beyond the initial 
transient stage. The case Fr = 0.32 was rerun with the time step halved (set equal to 
0.015) to test its influence on the fluctuations. Figure 7 shows that, for Fr = 0.32, the 
fluctuations resulting from the use of either time step are essentially identical except 
for a phase shift. It might be that, because the wave resistance is more unsettled 
initially for Fr = 0.32 and 0.385 than for Fr = 0.45 and 0.503, these fluctuations will 
persist longer for the two lower Froude number cases. Note that C, is zero at t = 0. 
Figure 8 shows a time sequence of wave profiles at the hull for Fr = 0.32 using 
At = 0.015 during one complete fluctuation. The wave resistance is smallest at 
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t = 0.3 

t = 1.2 

, 
t = 2.1 
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0 2 4 6 

x 

FIG. 10. Time sequence of free surface contours for Fr = 0.503. 
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t = 2.085 (when the stern wave is highest) and greatest at t = 2.010 and 2.175 (when 
the stern wave is lowest). The stern wave is fluctuating much more rapidly than 
Wehausen’s [ 121 thin ship analysis theory predicts. The fluctuations are independent 
of the time step. The period of the fluctuations in the wave resistance curves of Fig. 7 
are nearly independent of Froude number and are quite short (<0.2 the time to travel 

Fr = .503 
t = 3.0 

FIG. 11. Late time free surface contours for Fr = 0.503 at t = 3.0 and Fr = 0.45 at t = 3.6. 
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a ship length). Therefore the fluctuations don’t appear to be explainable by either the 
ringing phenomenon or Wehausen’s asymptotic expansion. 

Figure 9 shows an early time sequence of wave profiles alongside the hull for 
Fr = 0.503; Fig. 10 shows nondimensional surface wave elevation contour plots for 
the same time sequence and Froude number. Figures 11 and 12 show late time 

1 1 1 
I  8 1 I  I  

- 
Fr = .JWI 

t = 4.5 

Fr = .32 
t = 3.0 

U 2 4 

X 

6 

FIG. 12. Late time free surface contours for Fr = 0.385 at t = 4.5 and Fr = 0.32 at t = 3.0. 
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nondimensional surface wave elevation contour plots for the four Froude numbers. In 
Figs. IO-12 the entire channel is viewed aerially and channel sidewalls are shown. 
The channel width is 1.6 ship lengths, and, for viewing convenience, is portrayed in 
the figures as almost twice as large as it should be. The solution is computed in only 
one-half of the channel due to the symmetry conditions. Countour levels plotted (lines 
of constant surface elevation) had values of 0.002K with K = f 1, f2,.... Solid lines 
represent positive contour levels indicating wave crests and dotted lines represent 
negative contour levels indicating wave troughs. 

Divergent and transverse wave systems are present in all the contour plots of 
Figs. 10-12. The transverse waves are those waves which are essentially two- 
dimensional and have wave crests and troughs approximately perpendicular to the 
center plane (z = 0) of the channel. These waves progress downstream from the ship 
at approximately half the speed of the ship in all the contour plots of Figs. 10-12 
which is in agreement with the theory for two-dimensional harmonic progressive 
waves [6]. (The ship moves its length each unit of time.) The measurement of the 
downstream advancing wave front is made along the channel center plane (z = 0), 
lowest level isolated contours of either sign far downstream being ignored. The 
divergent waves are due to the three-dimensionality of the problem. For Fr = 0.385 
and t = 4.5 and Fr = 0.45 at t = 3.6 in Figs. 12 and 11, respectively, lowest level 
reflections off the downstream boundary can be seen at x = 6.4 far from the ship due 
to the use of Eq. (15). To obtain very long time histories it might be necessary to 
apply a wave damping technique at the downstream boundary. 

Figures 13-16 show perspective plots of the water surface for the four Froude 
number cases at the latest times computed. The viewer’s eye position for Figs. 13-l 6 
is at the point (x, y, z) = (4.3,0.3,0.63) ( i.e., the eye position is 4.3 ship lengths 
downstream in the x-direction from x = 0, 0.3 ship lengths above the plane y = 0, and 
0.63 ship lengths from the center plane z = 0. The center of the ship is located 2.025 
ship lengths downstream in the x-direction from x = 0.) The ship is shown as a cylin- 
drical projection of the ship hull outline at y = 0 (i.e., Eq. (23) with y = 0). The mean 
level y = 0 at the ship is located five grid intervals dy down from the top of the 
cyclindrical projection shown. Actual grid intervals Ax = 0.05 and Ay = 0.005 are 
shown along the sides of the ship. The bow and stern ends of the ship are shown 
slightly open, because the bow and stern edges do not contain grid points. The 
perspective and contour plots were made by using the Interactive Data Display 
System (IDDS) developed by Mr. Melvin Haas, Ms. Mary Beth Marquardt, and Mr. 
Richard VanEseltine at the David W. Taylor Naval Ship Research and Development 
Center in Bethesda, Maryland. 

All computations were performed on the Texas Instruments Advanced Scientific 
Computer (TI-ASC) at the Naval Research Laboratory in Washington, D.C. This 
computer has a parallel processor option which increases computing power 
significantly. This option was not used here due to the lack of a Fast Fourier 
Transform package to take advantage of the parallel processor. Without this option 
the TI-ASC has a computing speed roughly 25 % faster than that of the IBM 360-9 1. 
The following amounts of computer time were required to advance the solution from 
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FIG. 13. Perspective plot of free surface for Fr = 0.503 at t = 3.0. 



SAMUEL OHRING 

FIG. 14. Perspective plot of free surface for Fr = 0.45 at t = 3.6. 
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FIG. IS. Perspective plot of free surface for Fr = 0.385 at I = 4.5. 
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FIG. 16. Perspective plot of free surface for Fr = 0.32 at t = 3.0. 
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t = 0.0 (using At = 0.03) to the final recorded values of t for the four Froude number 
cases: 

Froude number 

0.503 
0.45 
0.385 
0.32 

Number of time steps 

loo (1 = 3.0) 
120 (t = 3.6) 
150 (f = 4.5) 
100 (t = 3.0) 

Computer time 

12 min, 41 set 
16 min, 12 set 
24 min, 33 set 
19 min, 59 set 

The higher Froude numbers require less computer time because they use fewer 
computational cycles per time step. In addition, a one-time computer preprocessing 
step, which used 3 min, 19 set of computer time, was required to compute C, and its 
inverse C; ’ and eigenvectors and eigenvalues, etc. for use in the imbedding technique. 
A one-time computation for the double model velocity problem required 3 min, 
33 sec. 

5. CONCLUSIONS 

The use of the imbedding technique for satisfying the ship hull condition, in 
combination with the double model velocity linearization of the free surface 
equations, has been shown to be effective in computing three-dimensional ship wave 
generation. This finite difference scheme is efficient with respect to both computer 
time and storage used. The scheme, with minor modifications, can calculate free 
surface flow past an accelerating ship in addition to an abruptly started ship 
considered here. Approximately steady states have been obtained at the ship hull at 
the higher Froude numbers, and wave resistance has been computed. Results obtained 
with the double model linearization are generally more accurate than those obtained 
with the use of a free stream linearization for the free surface as in [5]. 
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